Emotion and Motivation

Part 1: The Hypothalamus, the Amygdala, and the Midbrain

Zi-Seok Lee

2023-09-01

Contents

- <u>Introduction</u>
- <u>Autonomic Functions and Sham Rage: Hypothalamus</u>
- Fear: Amygdala
- Motivation and Reward: Midbrain

Introduction

- The *hypothalamus* and the *amygdala* were believed to be central to processing emotion.
- The *striatum* and regions in the *midbrain* that produce **dopamine** play an essential role in reward and motivation.
- But we will see that there is no single "emotion brain region", and that all mental functions rely on distributed circuits.

"Higher" Cortex, "Lower" Subcortex

- 19C thinking was that *emotion* was a "*below the cortex*" function
- Friedrich Goltz's finding that animals with an excised cortex still exhibited uncontrolled "rage" reactions was consistent with this hierarchical way of thinking
- John Hughlings Jackson embraced a *hierarchical view* of brain organization rooted in a logic of evolution as a process of the gradual accrual of more complex structures atop more primitive ones
- **Sigmund Freud**'s framework of the *id* (the lower level), the *superego* (the higher level), and the *ego* (in-between role between the other two) reflected this view

The Hypothalamus

- Participates in homeostatic
 - mechanisms
- Contributes to neuroendocrine outputs
 Contributes to circadian rhythm, wakefulness, sleep, stress responses, temperature regulation, food intake, thirst, sexual and defensive behaviors.
- Projections from the hypothalamus
 contact brainstem sites (including
 PAG) and the spinal cord

The Autonomic Nervous System

- The *Peripheral Nervous System* contains the nervous system other than the brain and spine
- The *Autonomic Nervous System* consists of the neurons that innervate the internal organs, the bloods vessels, and the glands
 - The *Sympathetic Subdivision* triggers responses during a crisis: fight, flight, fright, and sex
 - The *Parasympathetic Subdivision* facilitates digestion, growth, immune responses, and energy storage

Parasympathetic Division

The Hypothalamus is Multifaceted

• So, the textbooks picture the hypothalamus as a sort of *master controller* that *governs* structures of the brainstem and spinal cord.

• A hierarchical, class-based view of brain functions!

 \circ The image in the previous slide illustrates outgoing connections of the hypothalamus

- However, connections in the brain have a general tendency to be *bidirectional*.
- While signals from the hypothalamus go everywhere along the cortex, *the hypothalamus also listens* to what is happening in the cortex and the brainstem
 Recall) it provides internal contextual input to the superior colliculus in the *minimal brain*

The Better Picture: Integration & Distribution

Stress Response

- Neurons in the hypothalamus *synthesize* corticotropin-releasing hormone
- The same neurons *integrate* stress-relevant signals and *launch* the stress response
- CRH → ACTH → cortisol, corticosterone
 ACTH is released from the Anterior pituitary
 Glucocorticoids are released from Adrenal glands.
- Blood pressure and glucose levels increase while inflammatory and immune responses are suppressed

Patient S.M.

- A nearly complete natural lesion of the *amygdala* in both brain hemispheres
- Patient S.M.'s *first experience* of fear was in her mid-forties
- 14 seconds after inhaling CO₂,
 she exclaimed, "Help me!"

The Amygdala

The Amygdala: Media Star

▲홈 > 칼럼

[강은영의 뇌공학 이야기] 부정적인 당신, 긍정의 힘을 얻고 싶다면? 편도체 의 흥분을 억제해라!

가 **가**

🖶 G)

응 강은영 칼럼니스트 │ ④ 입력 2021.10.08 07:58

The Amygdala: Media Star

동아사이언스

감정을 담당하는 뇌 부위 편도체가 '식탐'도 조절해

2023.07.08 08:00

김원 상계백병원 교수, "편도체 예민도 사람마다 달라"

편도체 무디면, 공포영화 마니아 될 수도

2023.07.07 13:31

과학

The Basolateral Amygdala: Aversive Learning

• The *basolateral amygdala* is critical for learning the aversive significance of an initially neutral stimulus

 \circ The process can be studied by employing Pavlovian conditioning techniques or lesion studies

 \circ Modern genetic techniques confirm that plasticity in the basolateral amygdala is necessary

Classical Conditioning Rules

- A simple linear prediction of reward/punishment: the *Rescorla-Wagner rule*
- Stimulus \boldsymbol{u} , expected feedback \boldsymbol{v} , weight \boldsymbol{w} has the relation,

 $v = w \cdot u$

where the weights evolve to minimize the difference between v and the actual feedback r

• The weights evolve according the following algorithm,

$$w \to w + \epsilon \delta u$$
, $\delta = r - v$

• We can develop the model further, such as by introducing *temporal differences* so that the network learns to predict future reward. (the field of reinforcement learning)

The Central Amygdala: Emotional Responses

• Central Amygdala \rightarrow PAG (which contributes to defensive behaviors)

 \rightarrow hypothalamus (which contributes to autonomic systems)

 \rightarrow parts of the brainstem (which potentiate motor responses)

- The central amygdala also projects to the *locus coeruleus* and other brainstem sites
 o Norepinephrine, dopamine, serotonin, acetylcholine
 - \circ Augments the signal processing of motivationally relevant stimuli
 - A neutral stimulus may acquire affective significance

The Central Amygdala: Emotional Responses

Extra-Amygdalar Fear Circuits

- How did patient S.M. experience fear when breathing CO_2 ?
- *CO*₂-sensitive chemoreceptors engage sensory pathways that project to the brainstem
 A likely scenario implicates the PAG
- As important is it is for fear learning, the amygdala is *not the sole region* critical for it.
- Sites like the *thalamus and the cortex* undergo changes during aversive conditioning.
- Fear conditioning engages a *broader and more complex circuit* than initially thought.

Automaticity of the Amygdala

- Researchers measured responses in the amygdala even when the participants where not consciously aware of them.
- Then, are amygdala responses *automatic*? i.e., effortless, nonconscious, involuntary
 Defects in this system might underlie phobias, mood disorders, and PTSD
- The current answer: There is evidence that emotion-laden stimuli are more potent than neutral ones, but *not as strong as "no matter what"*

• Advice for anxiety: Focus on something challenging.

• If your attention is consumed by a challenging task, emotional content in unattended stimuli do not produce detectable differences in response

Perception is Not Passive!

• Areas in the occipital and temporal cortex (visual processing) are strongly engaged by emotion-laden stimuli

 \circ But many other circuits are likely involved (Pessoa 2013).

- Participants detected emotionally significant pictures better than neutral ones

 Pictures of houses and skyscrapers were shown, and a mild electric shock was used for conditioning
 The amygdala seems intimately involved in *selective information processing*
- Perception is not passive! What you *see* is what you *value*.

The Amygdala is More than a Fear Module

• There are fMRI studies that demonstrate how the activity in the basolateral amygdala can predict decisions and actions of monkeys and saving plans of humans.

Motivation & The Midbrain

- The field of motivation focuses
 on understanding how animals
 seek rewards
 Olds and Milner, 1954
 Rats with electrodes placed in the
 - *hypothalamus* would selfstimulate 2000 presses/hour
- When switched to parts of the *midbrain*, 7000 presses/hour

The Dopaminergic Midbrain

- The dendrites of neurons in the *nucleus accumbens* are full of dopamine receptors
 o Lower part of the *striatum*
- The dopamine-containing neurons in the *substantia nigra* form a band that extends to adjacent parts of the midbrain

 VTA (*ventral tegmental area*)
- But remember that there is no "reward molecule"

Rewards Produce Learning

- Pavlovian Conditioning : stimuli predict reward
- Operant Conditioning : actions predict reward
- If there is a *mismatch* between the *predicted value* and the *actual reward*, an error has occurred, signaling the need to update expectations about the future.

Predicting Reward

- Dopamine-containing neurons in the *striatum* signal a *reward prediction error*
 Firing increased if the actual reward was greater than anticipated, and decreased if it was smaller.
 Here, dopamine does not signal reward itself!
- The prediction error signal precisely matched what was predicted in mathematical models of learning developed in the 1970s
 - A remarkable success story for neuroscience to hit on mathematically describable findings!
- The role of dopamine and reward prediction have major implications for understanding *addiction* and *motivation disorders*

Predicting Total Future Reward

Temporal Difference Learning: How animals might use their predictions to optimize behavior when rewards are delayed

- The stimulus u(t), the prediction v(t), and the reward r(t) are expressed as a function of $t \in [0, T]$
- Instead of v(t) being the predicted reward at time t, define it as a prediction of the total future reward expected from t onward.

$$v(t) = \mathbb{E}\left[\sum_{t \le \tau \le T} r(\tau)\right]$$

• This provides a better match to psychological and neurobiological data

Predicting Total Future Reward

• We approximate v(t) by

$$v(t) = \sum_{0 \le \tau \le t} w(\tau) u(t - \tau)$$

• Then, find the weights by applying the stochastic gradient descent algorithm: $w(\tau) \rightarrow w(\tau) + \epsilon \delta(t)u(t - \tau)$

with $\delta(t) = (\sum_{t \le \tau \le T} r(\tau)) - v(t)$ being the *difference* between the actual and predicted total future reward.

• How do we compute $\delta(t)$ without the knowledge of the future?

Predicting Total Future Reward

• Stimulus appears at time t = 100, and a reward is given for a short interval at t = 200

Discussion

How can we predict the total future reward without knowledge of the future?
 Discuss whether the temporal difference learning rule makes sense:

 $w(\tau) \rightarrow w(\tau) + \epsilon \delta(t)u(t-\tau)$ $\delta(t) = r(t) + v(t+1) - v(t)$